ar X iv : m at h / 06 05 13 1 v 2 [ m at h . O A ] 1 1 Ju n 20 07 Trees , Ultrametrics , and Noncommutative Geometry
نویسنده
چکیده
Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes's example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry types and the local similarity types in those spaces can be analyzed using groupoid C *-algebras. The concept of a locally rigid action of a countable group Γ on a compact, ultrametric space by local similarities is introduced. It is proved that there is a faithful unitary representation of Γ into the germ groupoid C *-algebra of the action. The prototypical example is the standard action of Thompson's group V on the ultrametric Cantor set. In this case, the C *-algebra is the Cuntz algebra O2 and representations originally due to Birget and Nekrashevych are recovered. End spaces of trees are sources of ultrametric spaces. Some connections are made between locally rigid, ultrametric spaces and a concept in the theory of tree lattices of Bass and Lubotzky.
منابع مشابه
ar X iv : m at h / 06 05 13 1 v 1 [ m at h . O A ] 4 M ay 2 00 6 Trees , Ultrametrics , and Noncommutative Geometry
Noncommutative geometry is used to study the local geometry of ultrametric spaces and the geometry of trees at infinity. Connes's example of the noncommutative space of Penrose tilings is interpreted as a non-Hausdorff orbit space of a compact, ultrametric space under the action of its local isometry group. This is generalized to compact, locally rigid, ultrametric spaces. The local isometry ty...
متن کاملar X iv : h ep - t h / 05 06 18 6 v 1 2 2 Ju n 20 05 Matrix Models
Matrix models and their connections to String Theory and noncommutative geometry are discussed. Various types of matrix models are reviewed. Most of interest are IKKT and BFSS models. They are introduced as 0+0 and 1+0 dimensional reduction of Yang–Mills model respectively. They are obtained via the deformations of string/membrane worldsheet/worldvolume. Classical solutions leading to noncommut...
متن کاملar X iv : h ep - t h / 05 06 19 7 v 1 2 3 Ju n 20 05 The emergence of noncommutative target space in noncritical string theory Jan
We show how a noncommutative phase space appears in a natural way in noncritical string theory, the noncommutative deformation parameter being the string coupling.
متن کاملar X iv : m at h / 06 06 43 6 v 1 [ m at h . Q A ] 1 9 Ju n 20 06 NONCOMMUTATIVE POISSON STRUCTURES ON ORBIFOLDS
In this paper, we compute the Gerstenhaber bracket on the Hochschild cohomology of C∞(M)⋊Γ. Using this computation, we classify all the noncommutative Poisson structures on C∞(M) ⋊ Γ when M is a symplectic manifold. We provide examples of deformation quantizations of these noncommutative Poisson structures.
متن کاملar X iv : m at h / 05 06 37 9 v 1 [ m at h . G N ] 1 9 Ju n 20 05 Residuality of Families of F σ Sets Shingo
We prove that two natural definitions of residuality of families of Fσ sets are equivalent. We make use of the Banach-Mazur game in the proof.
متن کامل